Displacement ventilation
Displacement ventilation (DV) first emerged as a ventilation strategy in the 1970’s. It can lower energy consumption and improve air quality by supplying ‘fresh’ air direct to the occupied zones in buildings.
In ‘conventional’ mixing ventilation systems, air is supplied to occupied spaces at a relatively high velocity at ceiling level. This supply air mixes within the internal air, and a proportion of the mixed air is then extracted. Mixing ventilation systems may also re-circulate some of the internal air with the supply air.
Displacement ventilation systems supply low-velocity ventilation air at low level, close to the floor, creating a pool of cool, fresh air in the zone where people are likely to be. This air then heats up when it comes into contact with building occupants, equipment, lighting and so on. As it becomes warmer, so it becomes more buoyant and rises through the space, creating a thermal plume that drives ‘stale’ air upwards, where it is extracted. So, the fresh supply air ‘displaces’ the stale internal air.
This avoids the potential for ‘short circuiting’ which can occur in conventional mixing systems, where supply air is extracted before it has properly ventilated the occupied space.
Displacement ventilation tends to operate with lower air velocity, lower fan speeds, and higher supply air temperature compared to mixing ventilation systems. This avoids draughts and large temperature differences within the occupied zone which might otherwise cause discomfort.
Air is supplied through special, low-velocity diffusers which must be relatively large in area to provide adequate ventilation at low speeds. Diffusers are typically wall mounted, corner mounted or freestanding. The lower fan speed associated with displacement ventilation tends to result in less noise.
Displacement ventilation can supply cool air, or can simply supply fresh ventilation air, sometimes with cooling provided by other sources, such as radiant chilled ceilings. It can be used to provide low level heating, but is not a particularly effective method of heating, as warm air will tend to rise rapidly, before it has properly heated the occupied space.
Displacement ventilation is particularly suited to high-occupancy, open-plan spaces with high ceilings that allow thermal stratification, such as theatres.
In small spaces, such as school classrooms, displacement ventilation may be relatively straightforward and might be designed by following accepted ‘rules of thumb’. However in more complex spaces such as theatres, computational fluid dynamics (CFD) analysis might be necessary to model air flows and help size equipment.
NB Underfloor air distribution (UFAD) is sometimes considered to be a form of displacement ventilation. This uses the underfloor plenum beneath a raised floor to provide air through floor diffusers directly to the occupied zone. However, in some UFAD systems, the available diffuser area for UFAD is smaller, and so the supply velocity higher and supplied through diffusers that create greater mixing of the internal air than is generally found in displacement ventilation.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.